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RESULTS 

BACKGROUND 

• Tropical cyclones (TCs) pose great risks to life and property such as wind 
damage, inland flooding, and loss of life. 

• Numerical model forecasts of tropical cyclones have improved over the 
past several decades, resulting in reduced track and intensity errors. 

• One main limitation of numerical model forecasts of TCs is a course model 
grid resolution relative to the scale of TC genesis (TCG) processes. This 
can result in an inadequately resolved mass and wind fields. 

• Vortex initialization (VI) is one technique to resolve the mass and wind 
fields. Some methods involve insertion of a false vortex or data assimila-
tion (DA) to resolve the dynamics of TCG.1, 2, 3  

• Emerging machine learning (ML) methods have demonstrated skill in im-
proving TC forecast track and intensity errors.4, 5 

 

Can a ML method help extend a numerical model fore-

cast to predict when VI occurs?  

METHODS 

• ML model is a network with two long short term memory (LSTM) layers. 

• WRF/EnKF data6 is used for testing and training. It contains 80 ensem-
ble members with 6 hourly data.  

     • The dataset combines Advanced Research Weather Research and Forecasting model 

(WRF) and an ensemble Kalman filter (EnKF) and assimilates observational data. 

• Training data: 6 hourly 80 ensemble members for 09/18/2018 12:00 
UTC to 09/30/2018 18:00 UTC from WRF/EnKF. Data is reduced into 
principal components (PCs) using singular value decomposition (SVD) for 
the first 10 eigenmodes, and PCs are used to train. 

     • Input data: surface pressure & winds, lower and upper troposphere winds 

     • Output data: surface pressure & surface windspeeds with 24 h lag 

• Testing data: Three TC cases from WRF/EnKF are used to test a 24 h 
forecast with 24 h of past data input into the network. The storms, with 
their min surface pressure (PSFC), and max wind speed at first date of oc-
currence (TCG): Trami (1003 hPa, 13 m/s), “Twenty-Nine” (1004 hPa, 
13 m/s), Kong-Rei (1000 hPa, 13 m/s) 

DISCUSSION 

• Impact of model biases on network training: 

     • The location and intensity errors in WRF/EnKF were also seen in LSTM forecast. 

     • The LSTM network learned the model biases of WRF/EnKF. 

     • The limits of WRF/EnKF limit LSTM learning (e.g. processes over terrain). 

• Limitations of training and testing data: 

     • Regional latitude and longitude limits of LSTM network limit representation of 

global processes, and LSTM network did not learn latitudinal effects on dynamics. 

     • Testing the LSTM network model on the same data it had been trained results in 

greater forecast success than in-situ applications. 

Exclusion of moisture variables: 

     • The selected input variables represent dynamic parameters required for TCG, but 

excludes moisture variables to represent convective processes. 

     • Future research could include input variables to represent convective available po-

tential energy (CAPE) or mid tropospheric relative humidity (RH). 

 

CONCLUSIONS 

• Summary: 

A long short term memory model was trained on 80 members from WRF/EnKF which 
is a 6h DA cycled dataset at 1-degree resolution from 100E-180E, 0N-30N. Three TC 
cases were tested and compared to the ensemble mean surface parameters (PSFC, 10 m 
winds). 

• The LSTM network forecasted VI for test cases from within the training da-
taset. This success may not be replicated for other time periods. The lim-
ited training dataset would not capture decadal, seasonal, and sub-seasonal 
variability affecting TCG. 

• Opportunities for future work: 

     • Expand training data set and number of test cases. Refine the spatial domain of 
training data to expand northward and southward, remove values over land to fo-
cus on ocean processes. 

     • Add a variable to training data to represent latitudinal effects better (i.e. Coriolis 
parameter or absolute vorticity) 

     • Improve selection of number of eigenmodes for each variable for PCs 
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Figure 1: Trami ensemble mean WRF/EnKF surface pressure and 10 meter 
and windspeeds at time of TCG and 6h prior. X denotes the location of min 

PSFC at time of TCG from TC Vitals. 

Figure 2: Twenty-Nine ensemble mean WRF/EnKF surface pressure and 10 
meter and windspeeds at time of TCG and 6h prior. X denotes the location of 

min PSFC at time of TCG from TC Vitals. 

Figure 3: Kong-Rei ensemble mean WRF/EnKF surface pressure and 10 me-
ter and windspeeds at time of TCG and 6h prior. X denotes the location of 

min PSFC at time of TCG from TC Vitals. 

Figure 4: Trami LSTM forecast error for surface pressure and 10 meter wind-
speeds at time of TCG and 6h prior. X denotes the location of min PSFC at 

time of TCG from TC Vitals. 

Figure 5: Twenty-Nine LSTM forecast error for surface pressure and 10 meter 
windspeeds at time of TCG and 6h prior. X denotes the location of min PSFC 

at time of TCG from TC Vitals. 

Figure 6: Kong-Rei LSTM forecast error for surface pressure and 10 meter 
windspeeds at time of TCG and 6h prior. X denotes the location of min PSFC 

at time of TCG from TC Vitals. 

• Figures 1-3 show the surface pressure (PSFC), 10m zonal windspeed (U10), & 10m meridional windspeed (V10) at the time of TCG and 6h prior for each test case. 

• Existing WRF/EnKF track error can be seen through difference in location from the center of minimum PSFC and the X of real TC location at time of TCG. 

• Figures 4-6 show the error of LSTM forecast minus expected value from WRF/EnKF with the training data domain of 100E-180E, 0N-30N at 1 degree resolution. 

• All three cases predict a greater min PSFC than expected, & smaller zonal windspeed than expected. The model did not accurately forecast meridional windspeeds. 

• LSTM forecast retains the same track error as the WRF/EnKF data it was trained on. 

• “Twenty-Nine” was located at the northern boundary of the training data and had the greatest PSFC error. 


