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BACKGROUND METHODS

Tropical cyclones (TCs) pose great risks to life and property such as wind e ML model is a network with two long short term memory (LSTM) layers.

damage, inland flooding, and loss of life. « WRF/EnKF data® is used for testing and training. It contains 80 ensem-

Numerical model forecasts of tropical cyclones have improved over the ble members with 6 hourly data.

past several decades, resulting in reduced track and intensity errors. e The dataset combines Advanced Research Weather Research and Forecasting model

One main limitation of numerical model forecasts of TCs is a course model (WRF) and an ensemble Kalman filter (EnKF) and assimilates observational data.

orid resolqtion r.elative to the scale of TC genesis (TCG) processes. This Training data: 6 hourly 80 ensemble members for 09/18/2018 12:00
can result in an inadequately resolved mass and wind fields. UTC to 09/30/2018 18:00 UTC from WRF/EnKF. Data is reduced into

Vortex initialization (VI) is one technique to resolve the mass and wind pringipal COTPPOHGHtS (PCs) using singular Vahl? decomposition (SVD) for
fields. Some methods involve insertion of a false vortex or data assimila- the first 10 eigenmodes, and PCs are used to train.

tion (DA) to resolve the dynamics of TCG.% 23 e Input data: surface pressure & winds, lower and upper troposphere winds
Emerging machine learning (ML) methods have demonstrated skill in im- e Output data: surface pressure & surface windspeeds with 24 h lag

proving TC forecast track and intensity errors.+5 Testing data: Three TC cases from WRF/EnKF are used to test a 24 h
forecast with 24 h of past data input into the network. The storms, with

Can a ML method help extend a numerical model fore- their min surface pressure (PSFC), and max wind speed at first date of oc-

cast to nredict when VI occurs? currence (TCG): Trami (1003 hPa, 13 m/s), “Twenty-Nine” (1004 hPa,
P ) 13 m/s), Kong-Rei (1000 hPa, 13 m/s)
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Figure 1: Trami ensemble mean WRF/EnKF surface pressure and 10 meter Figure 2: Twenty-Nine ensemble mean WRF/EnKF surface pressure and 10 Figure 3: Kong-Rei ensemble mean WRF/EnKF surface pressure and 10 me-
and windspeeds at time of TCG and 6h prior. X denotes the location of min meter and windspeeds at time of TCG and 6h prior. X denotes the location of ter and windspeeds at time of TCG and 6h prior. X denotes the location of
PSFC at time of TCG from TC Vitals. min PSFC at time of TCG from TC Vitals. min PSFC at time of TCG from TC Vitals.
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e Figures 1-3 show the surface pressure (PSFC), 10m zonal windspeed (U10), & 10m meridional windspeed (V10) at the time of TCG and 6h prior for each test case.
o Existing WRF/EnKF track error can be seen through difference in location from the center of minimum PSFC and the X of real TC location at time of TCG.
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Figure 4: Trami LSTM forecast error for surface pressure and 10 meter wind- Figure 5: Twenty-Nine LSTM forecast error for surface pressure and 10 meter Figure 6: Kong-Rei LSTM forecast error for surface pressure and 10 meter
speeds at time of TCG and 6h prior. X denotes the location of min PSFC at windspeeds at time of TCG and 6h prior. X denotes the location of min PSFC windspeeds at time of TCG and 6h prior. X denotes the location of min PSFC
time of TCG from TC Vitals. at time of TCG from TC Vitals. at time of TCG from TC Vitals.

Figures 4-6 show the error of LSTM forecast minus expected value from WRF/EnKF with the training data domain of 100E-180E, 0N-30N at 1 degree resolution.
All three cases predict a greater min PSFC than expected, & smaller zonal windspeed than expected. The model did not accurately forecast meridional windspeeds.
LSTM forecast retains the same track error as the WRF/EnKF data it was trained on.

“Twenty-Nine” was located at the northern boundary of the training data and had the greatest PSFC error.

DISCUSSION CONCLUSIONS

o Impact of model biases on network training: e Summary:

e The location and intensity errors in WRF/EnKF were also seen in LSTM forecast. A long short term memory model was trained on 80 members from WRF/EnKF which
, , is a 6h DA cycled dataset at 1-degree resolution from 100E-180E, oN-30N. Three TC
¢ The LSTM network learned the model biases of WRF/EnKF.

cases were tested and compared to the ensemble mean surface parameters (PSFC, 10 m
¢ The limits of WRF/EnKF limit LSTM learning (e.g. processes over terrain). winds).

o Limitations of training and testing data: The LSTM network forecasted VI for test cases from within the training da-
taset. This success may not be replicated for other time periods. The lim-
ited training dataset would not capture decadal, seasonal, and sub-seasonal
variability affecting TCG.

e Regional latitude and longitude limits of LSTM network limit representation of
global processes, and LSTM network did not learn latitudinal effects on dynamics.

Testing the LSTM network model on the same data it had been trained results in .
greater forecast success than in-situ applications. Opportunities for future work:

 Expand training data set and number of test cases. Refine the spatial domain of

| training data to expand northward and southward, remove values over land to fo-
e The selected input variables represent dynamic parameters required for TCG, but cUS ON 0cean processes.

excludes moisture variables to represent convective processes.

Exclusion of moisture variables:

Add a variable to training data to represent latitudinal effects better (i.e. Coriolis
Future research could include input variables to represent convective available po- parameter or absolute vorticity)

tential energy (CAPE) or mid tropospheric relative humidity (RH). Improve selection of number of eigenmodes for each variable for PCs
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