
PHOTOS

PHOTOS

CONCLUSION

KEY REFERENCES

3-FINGER EXOSKELETON TO DRONE
BACKGROUND

There are five significant open-source software frameworks: CHAI3D, ROS Noetic, PX4, Gazebo 11, and QGroundControl. CHAI3D creates haptic, visual, and auditory
simulations for interactive touch-based experiences, essential for medical simulation, robotics, and virtual reality. ROS Noetic Ninjemys, the latest LTS release for
Ubuntu 20.04, offers comprehensive tools for developing robust robotic applications with enhanced Python 3 support and improved packages. PX4, an advanced flight
control software for drones and unmanned vehicles, provides a scalable platform for flight control and mission planning, often used with Gazebo 11, a high-fidelity
robotics simulation software. QGroundControl, a ground control station software, facilitates UAV management with features like mission planning and real-time
telemetry, offering a versatile tool for both professional and hobbyist drone operators. The research objective is to construct and operate a physical drone, simulate its
environment using PX4, Gazebo 11, and QGround Control, and control the simulated drone with exoskeleton hand signals.

PHOTOS

ROS, PX4, GAZEBO 11 & SIMULATIONS
To start, we downloaded ROS1 from the ROS Wiki and familiarized
ourselves with its fundamentals through a series of twelve YouTube
tutorials provided by Robotics-Back End. Initially, the turtle simulation
enables the turtle to travel in straight lines, creating squares,
according to the arrow keys but we learned to modify the turtle’s
movement to circles as well as adjusted its ROS services to change
the color of the line it draws from white to red. Following this, we
downloaded QGroundControl, PX4, and Gazebo 11 from Professor Li
Shuo’s Post Graduate student’s GitHub repository. This process
involved navigating through some learning curves, including two
minor errors related to directory paths and ROS configurations. After
successfully downloading the applications, we studied and modified
MAVROS drone code to learn its functionalities. As a result, we
developed a Python script called `tt.py` that maps WASD and 
[] to control the drone's movements forward, left, backward, 
right, up and down respectively. We used this file as a sample 
in developing `drone_move_new.py`, the final python listener 
in the exoskeleton-hand-to-simulated-drone process, in 
addition to completing the drone portion of the bridge 
Python script, states_new.py, designed to connect the 
drone's Python-based control system with the exoskeleton's 
C++ signal processing.

QUADCOPTER BUILDING
The assembly process of the drone began with securing the flight
controller unit (FCU) and the electronic speed controller (ESC) to one
end of the carbon fiber drone body. Next, the motor, battery, and
receiver wires were meticulously soldered to the ESC board, ensuring
robust electrical connections. Two sets of black and red wires were
then soldered to connect the power distribution board (PDB) and the
voltage reduction module to the FCU. Each wire was then carefully
attached to its respective component to ensure proper functionality.
The drone system was set up on Betaflight, and initial tests were
conducted to verify the operation of the motors. 3D printed vertical
mounds were constructed to hold three motion capture reflective
spherical markers. On the opposite end of the drone’s body, the PDB,
an additional carbon fiber base, and the battery adhered with a
motion capture reflective spherical marker were securely 
nailed in place like a hamburger. Propellers were then 
added and fastened, and to maintain organization, the wires 
were taped neatly. Following this, the battery and receiver 
were connected, and a thorough motor direction test was 
conducted to confirm that opposite corners of the drone 
rotated in matching directions and that same sides rotated 
in opposite directions. The quadcopter was then linked to a 
physical controller for flight. 

The finger can be in one of three states: extended or stretched, initial or 
resting, and closed. The thresholds were set up in the following order: "0" is 
less than Threshold 1, which is less than "1", which is less than Threshold 2, 
which is less than "2". Additionally, a True/False command was integrated 
at the beginning and within the if-else statements of `state_new.py` to link 
with the `drone_move_new.py` script, facilitating drone movement in all six
directions. 

VIDEOS

After launching ROS, opening QGroundControl, initiating PX4, accessing
`position_publisher_new.cpp`, opening `states_new.py` and `drones_move_new.py`,
and monitoring the rostopic `/mavros/local_position/pose`, the exoskeleton and
drone simulation is finally connected. Thus, we successfully integrated hand signal
inputs from the thumb, index finger, and middle finger of the three-fingered
exoskeleton with the Robot Operating System, enabling data transmission to PX4
and QGroundControl. This setup facilitated the precise control of a simulated
drone within the Gazebo environment. Additionally, we constructed a functional
drone capable of manual flight.

FCU ESC

NEATLY TAPED UP

CONNECTED THE WIRES

HAMBURGER ALIGNMENT

ROS CODE TO INITIATE THE
PYTHON FILE TO FLY

MOTOR TESTS VIA BETAFLIGHT

ROS TURTLE SIMULATION

ROS SUBSCRIBER

COMPLETED ROS TUTORIALS

ROS CONNECTED TO PX4, GAZEBO, AND QGROUNDCONTROL

LAUNCHED PX4 AND GAZEBO

STM32 FOR THE EXOSKELETON
SINGLE FINGER EXOSKELETON

CONNECTED THE WIRES
THREE FINGER EXOSKELETON

HAND IN THREE FINGER EXOSKELETON

COMPLETED QUADCOPTER

Contact & Affiliation:
Stephanie Loo – UC Berkeley -
yanceeloo@berkeley.edu 

1.

Seungeon Lee – NTU Singapore -
seungeon001@e.ntu.edu.sg 

2.

Host University: Zhejiang University 

VIDEOS

HTTPS://PAN.BAIDU.COM/S/1A6H55754RAQCFDOELBGWNW

VIDEOS

HTTPS://PAN.BAIDU.COM/S/1A6H55754RAQCFDOELBGWNW

VIDEOS

HTTPS://PAN.BAIDU.COM/S/1A6H55754RAQCFDOELBGWNW

VIDEOS

HTTPS://PAN.BAIDU.COM/S/1A6H55754RAQCFDOELBGWNW

AUTHOR INFORMATION

 Robotics Back-End. “Intro: Install and Setup ROS Noetic - ROS Tutorial 1 (ROS1).” YouTube, 17 Jan. 2022,
www.youtube.com/watch?v=Qk4vLFhvfbI&list=PLLSegLrePWgIbIrA4iehUQ-impvIXdd9Q&index=1.

1.

 “ROS/Tutorials - ROS Wiki.” Wiki.ros.org, wiki.ros.org/ROS/Tutorials. 2.
 “Drone_build_tutorial/2_1_Simulation_ROS_PX4.Md at Main · EEEManchester/Drone_build_tutorial.” GitHub,
github.com/EEEManchester/drone_build_tutorial/blob/main/2_1_Simulation_ROS_PX4.md.

3.

 “MAVROS_sample_code/Mavros_circle.py at Main · Maponarooo/MAVROS_sample_code.” GitHub,
github.com/maponarooo/MAVROS_sample_code/blob/main/mavros_circle.py. 

4.

 “MAVROS_sample_code/Mavros_square.py at Main · Maponarooo/MAVROS_sample_code.” GitHub,
github.com/maponarooo/MAVROS_sample_code/blob/main/mavros_square.py. 

5.

 Zhou Jin’s Drone Code6.
Su Yuan’s Exoskeleton Code7.

CHAI3D
Xu Peisen and Bao Yang Bin assisted with modifying Su Yuan’s exoskeleton code
to focus on the positional data, namely the XYZ coordinates, rather than the
angles of the three fingers, creating the `position_publisher.cpp file`. We then
completed the exoskeleton portion of the `states_new.py` script that listens to the
C++ file and subscribes the True or False of each finger’s X, Y, Z flags. These flags
represented the greatest change in a certain coordinate axis; the thumb used
flag Y, while both the index and middle finger utilized flag X. `True` indicated
movement, while `False` meant no movement. However, it involved extensive
debugging because our threshold and range values were off. We experimented
with the exoskeleton and gathered the following data:

SCREWING IN THE MOTORS

https://pan.baidu.com/s/1-nFm6r2wTRcxqljElG6hNQ
https://pan.baidu.com/s/1-jUlNGOcHPybzDhLTY3pqA
https://pan.baidu.com/s/1a6h55754rAQCFDoeLBgWNw#list/path=%2F
https://pan.baidu.com/s/1ImiLtsomDT3v6groFGkfDQ

