Grips

GLOBAL RESEARCH IMMERSION PROGRAM
FOR YOUNG SCIENTISTS

/"

-LOWDROI

Through Object-Sensitive and Life-cycle Aware Taint Tracking

Author: Alexander Yao - University of Maryland College Park - alexryao@gmail.com/ayao@umd.edu

D: Analyzing User Privacy Leaks in Android Apps

S
.

1. Introduction

for ma ny reasons.

FlowDroid.

any potential privacy leaks

¢ The development of mobile devices in the past half-century has revolutionized the daily lifestyles of all
people. However, with such a unified reliance on technology comes expected security and privacy risks.
Privacy agreements appear in almost every new download, application, or service, but are vastly overlooked

e Even if users read all articles stated in these lengthy agreements, how can we be sure our data is actually
safe? To understand the hidden inconsistencies between lengthy privacy policies agreements and actual
developer code, a tool has been designed to uncover potential dangers apps pose to user security:

e FlowDroid is a tracking tool created to analyze an application's byte code and configuration files to locate

tracking, FlowDroid taints information beginning from a source and ending at a sink, tracing paths generated

either created by developers' carelessness, or malicious intent. By utilizing taint

by method calls to locate the true destination of user data .
Why Do People Skip User
Agreements and Privacy Policies?
\ m M osn Methad —» | Bold o) Gﬂ'h - hf‘m T aint HIH‘H‘I\ % of people who stated the following reasons for not
P;hi R f * reading user agreements and privacy policies I I
hﬂl‘: s C.aky 0#?—# hﬂﬁ Dca:urren'.:cn"e . .
vy P S ‘
e In my work, | configured the FlowDroid tool through the o L
terminal's command line, as well as Flowdroid's built-in Peerence . o
android directory, and analyzed several various Android app perbaacs R — R
apk's to demonstrate Flowdroid's capabilities. . T T T T e

N
P

AN

2. Soot Framework & Maven

e Soot is a framework utilized in the FlowDroid GitHub repository and is essential for e Within my research, | used Maven to build
FlowDroid's precise static taint analysis. and configure FlowDroid through Intelli)
IDEA.

e Soot provides four intermediate representations to analyze & transform Java bytecode

Baf, Jimple, Shrimple, and Grimp, however, | focused on understanding and utilizing e The analysis was run on a remote server
Jimple in my work with FlowDroid. Jimple is essentially a type of middle code to which and | used apK's provided by my professor
the Java code is converted to that is easier to analyze than pure bytecode. and others | found online.

¢ Soot can be added to any Java project through any Java build system, such as Maven and
Gradle, as a dependency.

\) (7

3. Method #1

analysis. The first of which
in the cmd directory.

other identifiers to specify

-a 8.63.2.apk.1 \
-p android-35/android.jar \
-5 SourcesAndSinks.txt

e Within FlowDroid, there are two methods to perform taint

e This default class is a standalone tool for users that strictly want [——"

to run FlowDroid without writing any code. It can be thD
. . * . » O sootOutput
configured using specific linux arguments, like -3, -p, -s, and arc + The srguments accepted when

ao@Alexs-MacBook-Pro-2 soot-infoflow-cmd % java -jar soot-infoflow-cmd-2.13.0-jar-with-dependencies.jar %

o Although the ease of use for the given main class is beneficial for starters, it's less s i e S st s
flexible than performing taint analysis through the android directory. « oot options are setto the inputted ' £

Import Statements necessary for
Flowdroid's execution

is the provided main class that exists

v [soot-infoflow-cmd

> [0 .settings

: v [soot.jimple.infoflow.cmd running the main class are assigned
th €in p uts. to the respective variables - this is
the primary area of versatility
within this directory and the
benefit, since you can configure
your main class to analyze based
on certain parameters.

#) AbortAnalysisException

MainClass

mDir, apkPath);

parameters from above, configuring
Flowdroid before it runs.

APK #1: toutiao-9-1-0.apk.1

Leaks Identified: 1

e The second method to execute taint analysis is through the soot-inflow-android directory.
Unlike the cmd directory, android does not come with an executable main class - this

leaves it up to the programmer to utilize the resources provided in the FlowDroid's el Jbemiing
GitHub package to configure and customize what is analyzed throughout the analysis. . s Flowbroid
understand the behavior of library
H mi H : methods without analyzing their
e | programmed a second main class to mimic the default main class, as shown with the temal uing the provde
accepted arguments. ere are samples results of the outputs from the main classes when o The try statement irst uns the datz
executed on different apks: flow analysis and handles any
: exceptions that might occur

e SummaryTaintWrapper is a class
used to provide summaries of library

 runinfoflow starts the analysis

« [f results is not null, it is printed,
which outputs the details of the
detected taint flows.

Leaks Identified: 2

N
e

N\

5. Callgraphs: CFG's vs ICFG's

e Finally, FlowDroid, with soot, has the ability to create graphs: namely call graphs (CGs) and inter-
procedural control flow graphs (ICFGs).

e The larger the apk, the more intricate and complex the graph will be, since there are significantly
more edges and nodes to be included within the graphs. To try to create and display an ICFG, |
configured a class within the soot-infoflow-android directory called ICFGConstructor, as shown on
the left

e Below are the example diagrams of CG's and ICFGs, as well as primary differences and use cases for
both graphs and why they are important and relevant to FlowDroid

<~void onResume()= Source Program: CFG:
{"' R N e ¥ R . ’ s o '.,\.:/.'
/ int low, high, mid
low); ¥
- (27
cate(0s. Bundle)> o ¥ j\\
. -] high) \‘*
‘void onRestart()= 1L (X r- vmid]) i (3
11g mic 4 b,
x > v[mid]) /
mid + 1 f /
rn mid; e v 4
<~:dummyA \4) f
' ¥
<~:void onDestroy()= W v N~
e Call Graphs represent the calling relationships between ¢ Inter-Procedural Control Flow Graphs represent the flow across the
program methods or functions. entire program, including between and within the program’s

e Each node in the graph represents an individual method methods themselves.
or function, and each edge is a call from one method to e Each node represents any statement or block that could be inside

another - If method A calls method , a directed edge any function or method within the program
from A to exists. e Two types of edges exist in the graph:
e Usage & Relevance: Gs focus on the higher level
structure of a program, such as which methods connect, o Intra-procedural edges - the control flow inside a method,
and are often used in static analysis and understanding which could be connecting statements or other blocks
L program dependencies. FlowDroid constructs call depending on the program's control structure loops,
= e This graph that | was graphs by default since they help to identify all methods conditionals, etc
e . A= able to generate was that are called inside an application. y understanding o Inter-procedural edges - method & returns. Bﬁdges the
S ST e e different than the goal : : : : : : : :
St /2 output - it included which methods are invoked, FlowDroid can identify calling statement in one method to the entry point of
e " both calls from inside potential leaks between sources and sinks. another method, then back to the return point
S e = b the ICFG constructor, as
e A== well as the apk The Key Differences & Similarities:

Lﬁ;ﬁ;’rhtgutfelim e e Call Graphs are more general, created to understand the high- Usage & REl'?Vance: IFFGS di%PlaY a detailed :analYSjS tl:‘rDUEhUUt
' P level layout of an Android application and its method calls. the program's execution, tracing data flow, taint analysis, and

e hown above, without o . . .
i _ - Il optimization that helps with understanding the program's control

redundant edges and e Inter-procedural Control Flow Graphs track data flow between s
o e and within method calls, allowing FlowDroid to more precisely flow between and within method calls.
‘ understand leaks between sources and sinks. e |CFGs enable FlowDroid to track the data flow between methods
e Both graphs are vital for FlowDroid's capabilities since they and components of the application. This precise analysis of the
allow the tool to understand the Android application as a application allows taint analysis to accurately trace data flow on a
whole, and the relationships of its method calls. more intricate and context-sensitive level

J

N
-

Y7 N\

data in the graph.

-
6. Conclusion 7. References & Acknowledgements
H 1 H i i - H [1] Arzt, Steven, Slegiried Rasthofer, and Eric Bodden. 2014, "FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecyde-aware Taint Analysis for Android Apps” hitps:/iwwwbodden.de/pubs/far+14flowdroid pdf
* In my research, was ab[e to CGﬂﬁgU I'E, bUIld’ and run static taint analysm two dlffEFE‘l"It WB')’S th rough g dlrE'CthY and [2] kKang, Hongzhaoning, Gang Liv, Zhengping W, Yumnin Tian, and Lizhi Zhang, 2021, "A Modified FlowDroid Based on Chi-Square Test of Permissions” Entropy 23, no. Z: 174, hitps://dolorg10.3390/e23020174,
th rough the terminal - on different Android app[icatigns LISiI'Ig their a pk'5 and a Android jar file. | uncovered data leaks in [3] Kawaguchi, Shinfi, Michihiro Horie, Kazuhiko Yamamato, and Shin-ichi Minato. 2003, "Source Code Modularization Using Lattice of Concept Slices.” 2003 |EEE Intemational Conference on Software Maintenance, 2003, ICSM 2003,
. Proceedings. hittps:/ /www.researchgate.net/publication/4065402_Source_code_modularization_using_lattice_of concept_slices?
various applications and attempted to generate a visual of a inter-procedural control flow graph created by FlowDroid. _tp-ey}b2502XhOlp7IMZpenNOUGFZSIGTI9kaXIV3QILCIWWdloDXRpemVACI9M,

Despite inconsistencies in my control flow graph, | was able to generate a working graph, and begin configuring the output

e This study highli ghts many of FlowDroid's ca pabilities, including the built-in features th mugh soot and other imported concluded, | do aspire to continue using the information | gained to explore FlowDroid's capabilities in the near future. The next few steps of this research
dependencies. Oftentimes, after blindly agreeing to lengthy privacy statements, app users lack transparency in companies’

data usage. When analyzed with FlowDroid, some Android applications were found to have data leaks, displaying its to learn about FlowDroid and offering assistance when needed, especially with such a complex tool to work with.
k usefulness and ability to uncover critical data leaks to keep user data secure. / \

[4] Secure Software Engineering Group. 2024, "FlowDroid." GitHub. https://github.com/secure-software-engineering/FlowDroid,

Although | didn't reach the next step of what | wanted to accomplish, leaming about how customizable and versatile of a tool FlowDroid can be was very
interesting, This has definitely been the highest-level tool that I've used as someone who's pursuing computer science, and, though the research period has

after creating a proper graph would have been configuring unique source & sink files and obtaining sample apk's using a Google Pixel through it's Google
Play store. To end, | would like to express my utmost gratitude towards Professor Luo and Teacher Zhuo for providing me with the resources and topic ideas

/

