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Introduction

In recent years, with the rapid development of artificial intelligence,

Large Language Models (LLMs) such as GPT-3, LLaMA, ChatGPT, and
GPT-4 have shown excellent performance in many fields. These models

not only have the ability of context learning and thought chain
reasoning, but also solve a vanety of tasks in a zero-shot or few-shot
manner, including machine translation, summary generation, sentiment
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To overcome these hmitations and realize the full potential of LLMs,
researchers began to explore ways to combine LLMs with Agent Table 4. MRR for the models tested on each relation of WN 8RR,
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skills, such as the creation of art on a specific topic or the development
of personalized travel plans
Performance of HousE Meural modular and compositional approaches have been

explored to automatically perform desired sub-task
decomposition, enhancing interpretability and adaptability

Table 5. MRR for the models tested on RMPs in FB15k-237. Across various reasoning tasks. Early work posits that complex
reasoning tasks are fundamentally compositional and
Task RMPs | RotatE  HousE proposes neural module networks (NMN) to decompose them
Predicting | 171071 | 0498 0514 INto subtasks. However, Fhese methods rely on Ijritltle off-the-
Head I-to-N | 0475 0479 shelf parsers and are imited by module configurations. Some
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network layouts in an end-to-end manner, without relying on
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Predicting | .~ "\ | 0071 0.086 parsers, using reinforcement learning [58] and weak
Tail Nao-l | 0747 0778 supervised learning. In visual reasoning, models comprising a
(MRR) > | ' -
N-to-N | 0.367  0.392 program generator and an execution

engine have been proposed to combine deep representation

learning and symbolic program execution. In the domain of
mathematical reasoning, an interpretable solver has been

developed to incorporate theorem knowledge as conditional
rules and perform symbolic reasoning step by step. Our work
takes inspiration from neural module networks, yet it offers
several distinct advantages.

I-to-N and N-to-1 relatnons. For example, HousE outper-
forms RotatE on 1-to-N relation member _of _domain_region
and N-to-1 relation instance_hyvpernyvm with 62.55% and
35.80% relative gains, respectively.

RMP: Relation Mapping Properties

Knowledge base core flowchart Relation

Langchain-based Q&A application based on local knowledge base. The Catego ries
process i1s as follows:
load document — read document —* split text — embed text — embed
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query — Match the top k of the text vectors that are most similar to the .
statonery vectors — The matched text 15 added to the prompt as @H@
r r ra

context along with the question — Submit to the llm to generate a Q&A
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Three Major Parts of
FAAN

(1) Adaptive neighbor encoder to learn
adaptive entity representations;

(2) Transformer encoder to learn
relational representations for entity pairs;

(3) Adaptive matching processor to
compare the query to the given references.

Figure 2: The framework of FAAN: (a) Adaptive neighbor encoder for entities; {(b) Transformer encoder for entity
pairs; (¢) Adaptive maiching processor 10 maich A -shot references and the query.

Future study

Althoughh large language models (LLMs) have achieved excellent performance in a variety of evaluation benchmarks, they still

struggle in complex reasoning tasks which require specific knowledge and multi-hop reasoning. We will try more models that can
improve llm accuracy. Through improved prompt strategies (such as CoT and ChatCaT), different toolkits and logical chain thinking

model frameworks are invoked to make large language models perform better in different areas of expertise.
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