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1 Introduction

An undirected graph G = (V,E) consists of a set of vertices V and a set of edges E. A matching M in an undirected graph is a subset

of the edge set E that have no vertices in common. It is called a perfect matching or 1-factor if each vertex in G is incident with an edge

of M . General factor problem (GFP) is a generalization of matching problem. In which each vertex v ∈ V has a set of feasible degree

which is called a degree constraint π(v) ⊆ {0, 1, ...,degG(v)} where . The weighted general factor problem (WGFP) further establishes

a weight w(e) ∈ R to every edge e ∈ E and the goal is to find a optimal general factor that maximizes the total weight. Previous

work has proved that GFP is NP-complete when a degree constraint has a gap of length at least 2. Polynomial time algorithms are

discovered for some cases of WGFP for interval or parity interval degree constraints by reducing them to weighted matching or perfect

matching problem using gadget constructions. In [1], an O(mn6) algorithm and a weakly polynomial time algorithm O(logWmn6) are

introduced to solve the unweighted GFP and the weighted version respectively where n = |V |, m = |E|, W = max
e∈E

w(e). Then, [2]

proved that the method of gadget construction cannot be used to solve other cases of WGFP and also provided a strongly polynomial

time algorithm for WGFP allowing degree constraints as intervals, parity intervals, {pv, pv + 1, pv + 3} and {pv, pv + 2, pv + 3} where

pv ∈ {0, ...,degG(v) − 3}. In this project, we hope to solve WGFP with each degree constraint containing gap of length at most 1 in

polynomial time which is the strongest generalizations of matching that was not proven NP-hard. This poster does not propose any

complete algorithm for this problem, but will discuss some ideas to approach the problem.

Fig 1: Assume all vertices have

degree constraint = {1}. The set
of green edges is a perfect match-

ing or 1-factor, forming a bipar-

tite graph.

Fig 2&3: Examples of canonical

paths. Solid and zavy edges belong to

F&F
′
respectively. π(red vertices)=

{1}. π(blue vertices) = {0, 2}. Fig 2:

π(v) = {0, 1, 3, 5, 6}. Fig 3: π(u) =

{0, 1}, π(v) = {0, 1, 3, 5}

2 Method

Firstly, let us recall some important concepts from [1] and [2] that are useful in this project. Then, we will state the main theorem that

we are trying to prove in order to achieve a polynomial time algorithm. Let F be a factor of graph G.

Definition 1. An alternating path with respect to (w.r.t.) F is a sequence of edges P = ((v1, v2), (v2, v3), ..., (vk, vk+1)) such that

• ∀i such that 1 ≤ i ≤ k − 1, exactly one of the edges (vi, vi+1), (vi+1, vi+2) belongs to M

• each edge of G occurs in P at most once

• if v1 = vk+1, then either both edges (v1, v2) and (vk, vk+1) are in F, or both are not in F

Definition 2. A meta cycle C w.r.t. F is a sequence of alternating paths of the form (P (v1, v2), P (v2, v3), ..., P (vk, v1)) such that

v1, ..., vk are pairwise distinct.

Definition 3. A meta path P(v1, vk+1) w.r.t. F is a sequence of alternating paths of the form (P (v1, v2), P (v2, v3), ..., P (vk, vk+1))

such that v1, ..., vk+1 are pairwise distinct.

Definition 4. A factor F
′
is of neighbouring type of F if there exists a set W such that one of following is satisfied

• |W | = 0

• |W | = 2 and ∀w ∈ W, degF (w) and degF ′(w) are adjacent, that is max(degF (w)) + 1 = min(degF ′(w)) or

max(degF ′(w)) + 1 = min(degF (w))

• |W | = 1 and ∀w ∈ W, there exists k, such that degk(w) is adjacent to degF (w) and degF ′(w)

Definition 5. A canonical path S(v1, vk) w.r.t F in graph G consists of meta-cycles C1,C2, ...,Cp incident to a vertex v1 and

C
′

1,C
′

2, ...,C
′

p incident to vertex vk. In case v1 ̸= vk, there is a meta-path P(v1, vk). The application of all meta-cycles and the

meta-path to M results in a factor F
′
of neighbouring type to F. S is a basic (canonical) path if no proper subset S

′ ⊊ S is a

canonical path and w(S
′
) ≥ w(S) or w(S

′
) > 0.

By the above construction, we can obtain 2 important results. Suppose any 2 factors F and F ∗.

Firstly, the symmetric difference of F and F ∗, denoted as F∆F ∗ =
⋃n

i=1Si ∪
⋃l

iCi, where Ci is an alternating cycle and Si is a basic

path w.r.t Fi−1 if we denote F0 = F∆
⋃l

iCi and Fi = Fi−1∆Si. Also, Fk = F ∗.

Secondly, if ∃ a factor of greater weight than F , then ∃ another factor of greater weight than F that is of neighbouring type to F .

Thus, the algorithm is obtained. Firstly, run Cornuejol’s algorithm [3] to return an arbitrary factor F if there is one. Then, iteratively

find neighbouring type to F with greater cardinality until it is maximum. There are at most 2 vertices whose degree is not restricted to

degF (v) so possible sets are O(n2). There are m edges and uniform matching can be found in O(n4). Thus, runtime = O(mn6). For

weighted version, treat the weights as binary number and run the above algorithm for each digit which takes O(logW ) times.

As for Shao’s algorithm, denote {pv, pv+1, pv+3} as T1 and {pv, pv+2, pv+3} as T2. Denote T1∪T2 = T and Tω = {v ∈ V |π(v) ∈ T}

Definition 6. If π(v) = {pv, pv + 1, pv + 3}, D0
v = {pv + 1, pv + 3}, D1

v = {pv}. If degF (v) = pv, DF
v = {pv}. Otherwise,

DF
v = {pv + 1, pv + 3}.

If π(v) = {pv, pv+2, pv+3}, D0
v = {pv, pv+2}, D1

v = {pv+3}. If degF (v) = pv+3, DF
v = {pv+3}. Otherwise, DF

v = {pv, pv+2}.

Definition 7. (”neighbouring types”) πF
W (v) = π(v)\DF

v for v ∈ W ; πF
W (v) = DF

v for v ∈ Tω\W ; πF
W (v) = π(v) for v ∈ V \Tω

Notice that the newly defined degree constraints are all interval or parity interval. By the properties of subcubic graph, similar result

can be obtained. Suppose F is a factor and F is optimal for some u ∈ Tω and D0
u as its degree constraint. Then, a factor F

′
is optimal

globally if and only if w(F
′
) ≥ w(F ) and w(F

′
) ≥ optimal factor for every W where u ∈ W ⊆ Tω and |W | = 1 or 2. As a result, we

can first find an optimal neighbouring factor F opt with all degree constraint as intervals or parity intervals by recursively picking u ∈ Tω

and set its degree constraint to be D0
u if there exists a factor, otherwise, set it to be D1

u. Then, for all v ∈ Tω, set W = u ∪ v and set

degree constraint as πF opt

W . Find optimal factor FW in this case if exists. If w(FW ) > w(F opt), then set F opt to be FW .

Being inspired by the above algorithms with structures like basic canonical paths, we hope to prove that some local optimal factor can

be updated into global optimal factor by polynomial updates, which gives the intuition for the theorem that we are trying to prove.

Theorem 1.Suppose T
′

1 = {0, 2, 4, . . . , 2p, 2p+ 1}, T′

1 = {0, 1, 3, . . . , 2q + 1}. Denote T
′
= T

′

1∪ T
′

2 and T F∆F ∗
= {v ∈ V |π(v) ∈ T

′

and degF (v) ̸= degF ∗(v) mod 2}. Let u ∈ F ∩ F∆F ∗ such that π(u) ∈ T
′

1. If F
∗ is optimal and |T F∆F ∗| ≥ 4, then ∃F ′

such that

• w(F
′
) > w(F )

• F
′
contains at most 2 vertices with different parity as the corresponding vertices in F

• degF ′(u) ≡ degF (u) mod 2

3 Discussion

The proof is not complete and this is just an idea. Should you have any queries or ideas, please feel free to contact hklamar@connect.ust.hk
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