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Training Parameters:

• Cross-Entropy loss (class-

weighted)

• Adam optimizer

• LR reduction on learning 

plateau

• Xavier uniform initialization

• Early stopping (typically 

activated in ~10-20 epochs)
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Abstract

It is well-known that the Madden-Julian Oscillation (MJO) has deep impacts on 
wintertime precipitation in Southern China. Thus, deepening our understanding of 
the MJO and its teleconnections is crucial to accurate weather forecasting in this 
region. While neural network techniques can be robust and highly accurate, they 
(1) often lack interpretability, and (2) require vast amounts of training data to reach 
a high-quality result. To circumvent each of these issues, we (1) employ an 
inherently interpretable Neural Additive Model (NAM) and (2) utilize training data 
sourced from large-ensemble climate simulations. We aim to determine if there is a 
meaningful connection to be learned between the MJO and S. China precipitation 
within the simulated data. We then interpret the network to determine the most 
important feature contributions. While the model ensemble we produce does not 
outperform the null accuracy, we hope that this modeling framework can be applied 
to future MJO studies relating to machine learning and interpretability.
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A = baseline accuracy 
(percentage correct)
Aj = accuracy after 
permuting feature j

• NAM performance was compared to 

that of a simpler fully-connected neural 

net, as well as random guessing.

• The simple NN outperforms the NAM, 

but neither is able to overcome the null 

accuracy, defined by the majority class 

(horizontal dashed line).

• Both outperform a purely random 

model, but only by a small margin.

Accuracy Assessment

Error bars indicate 5th and 95th percentiles. Dashed line 

represents portion of majority class in dataset, which 

represents the null accuracy

Curve Visualization

• Features such as PC1-9 have less of an influence on the output decision than those with a 

higher output range, such as DOY and PC20.

• We see more nuance in the decision curve near the centers of feature distributions in the 

training set.

Raw logit curves for 

individual features. Fill 

bounds indicate 5th 

and 95th percentiles 

across model 

ensemble. Feature 

distribution is taken 

from training set. DOY 

was min-max 

normalized between 0 

and 1.

The Madden-Julian Oscillation (MJO) is 

an eastward-propagating  convective 

anomaly characterized by two primary 

phases: an enhanced rainfall phase and a 

suppressed rainfall phase. Understanding 

this phenomenon’s teleconnections has 

great importance to weather forecasting 

in China, and it would be particularly 

convenient to develop a model that 

makes predictions based on readily-

obtained MJO indices. Here, we use the 

OMI index, which is calculated via the 

principle components (PCs) of Outgoing 

Longwave Radiation (OLR) data.

Neural Additive Models (NAMs) provide a 

simple yet effective means to increase model 

interpretability while limiting sacrifices to model 

expressivity. Each feature (or subset of features) 

has its own isolated subnetwork (or set of 

subnetworks) whose contributions are linearly 

combined via a set of trained weights and 

biases. By enforcing this linear separation, the 

contribution of each parameter in isolation can 

be found exactly and does not have to be 

approximated. This allows for easier visualization 

and stricter assessments of feature importance. NAM architecture for binary classification.

MJO diagram. 

Explained Variance Importance

1. Filter CMIP6 OLR data and regrid to +/- 20 deg latitude band

2. Compute empirical orthogonal functions (EOFs)

3. Apply EOFs to OLR data to calculate the OMI index, which consists of the 

first two PCs

Compute CMIP6 MJO Index (OMI)
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Example time series of OMI PC1 and PC2.

1. Obtain CMIP6 precipitation data

2. Standardize on day of year to obtain annual anomaly

3. Apply k-means clustering to obtain precipitation classes

Compute CMIP6 Precipitation Anomaly 

(3)(1) (2)

K-means cluster centers used for classification.
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Single subnetwork:

• 4 FC layers

• 16 neurons per layer

• LeakyReLU activation

×20 (ensemble)

Explained Variance Importance

Classification Accuracy

Curve Visualization

• After shuffling feature j, we record the factor by 

which the accuracy decreases, defined as the 

Permutation Importance (PI).  

• We expect more important features to have a greater 

influence on accuracy and thus a greater PI.

• This is repeated multiple times to reach a stable 

result.

fj = jth feature network
xij = sample i of jth feature
n =number of samples

• We expect features with a 

greater amount of output 

variance to be more important.

• The sample variance of each 

feature normalized by the total 

variance is the Importance Ratio 

(IR).

• Again, we see PC20 appearing and 

DOY appearing as the most 

important features.

• The importance structure in larger 

lag times is less defined.

• Since each cluster has its own 

decision curve, we are able to 

separate this importance metric per 

cluster. Between cluster importance 

ratios, we see a similar pattern.

• Permutation analysis and explained 

variance analysis seem to agree on 

which features are the most 

important.

Permutation Importance

• Most important 

features: PC20, DOY, 

PC10

• Features closer in time 

to the precipitation 

prediction date seem 

more important, but 

this behavior drops off 

at around t = -3

Permutation 

importance. 

Larger values are 

more important. 

Blue represents 

PC1, brown PC2. 

Pairs of bars 

represent the 

same lag time. 

Darker shading 

indicates a later 

time.

Explained variance importance. Larger values are more important. 

Blue represents PC1, brown PC2. Pairs of bars represent the same 

lag time. Darker shading indicates a later time. 

Features:

• DOY at day 0

• PC1 and PC2 from day 

-15 to day 0

Target:

• Precipitation cluster at 

day 10

The Coupled Model Intercomparison Project 6 (CMIP6) is a global initiative 

through which researchers around the world contribute climate simulation data. 

Data derived from CMIP iterations have been widely used in climate research since 

the project’s initiation in 1995. Previous studies have shown that machine learning 

models are able to learn meaningful patterns from CMIP6, due in part to the large 

wealth of data available. Here, we utilize OLR and precipitation data derived from 14 

models to compute simulated MJO indices and define the model target, 

respectively.

• N = 52,531

• Dry Southern China 

cluster undersampled to 

15000

• Training set: 80%

• Ntrain = 42024

A very small pattern could be learned from the dataset, but not in a way that 

was significantly above the null accuracy. Trained models achieved an accuracy 

better than random guessing but did not outperform a model that simply learns to 

predict the majority class. This could indicate that the current data processing 

framework does not represent the link between MJO and S. China precipitation well. 

Also, previous work has shown that for certain CMIP6 models, the MJO and its 

teleconnections are not simulated accurately.

Future work: Experiment with different MJO indices (such as the Real-Time 

Multivariate MJO (RMM) index) and other data processing strategies. Use varied 

data sources within CMIP6.

While allowing for greater interpretability, a simpler architecture was able to 

outperform NAMs in terms of pure accuracy. This simpler architecture only 

consisted of a few fully-connected layers (and contained interaction terms) yet  

outperformed the NAMs, which had a much higher parameter count. However, 

because of the modular nature of NAMs, unique subnetwork architectures could be 

used to take advantage of more advanced models while maintaining interpretability.

Future work: Experiment with alternative or hybrid NAM architectures, such as a 

Generalized Additive Model with Structured Interactions (GAMI-net), which allow for 

pairwise interactions between the most important features.

Despite relatively poor model performance, there is still an importance 

structure to be found, and decision curves are still meaningful. DOY and the 

latest lag-time PCs were found to have the highest importance in both metrics used. 

And within this most-important feature set, a collection relatively consistent decision 

curves can be found across the different models in the ensemble. If the pattern 

between MJO and S. China precipitation were more pronounced in this dataset, 

NAMs could prove useful in not only determining feature importance but also for 

direct visualization of feature contributions.

Future work: Apply the interpretable aspects of NAMs on different datasets. 

Example precipitation map. Precipitation map, standardized.

Permutation Importance
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Example OLR map. EOF1 and EOF2 map for DOY 181.

Example curve visualization.

Example confusion matrix.
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