
Since the 2015 Paris Agreement, when multiple
countries agreed to reduce their greenhouse gas (GHG)

emissions and achieve net zero by 2050, interest in
GHG emissions monitoring has risen. However, the
widely used calculation-based estimations for GHG

emissions were criticized for being inaccurate,
increasing the need to validate existing GHG

inventories using measurement-based solutions.

UAVs are known for being able to monitor real-time
emissions while accounting for spatial-temporal

variations. Yet, to effectively monitor emissions within
a limited timespan across a large 3D space,

determining the flight path that can most efficiently
and effectively detect plumes and measure

concentrations is critical. Unfortunately, no studies
have found an algorithmic way of optimizing a UAV’s

flight path. Before exploring emissions monitoring,
however, the first step is to make sure that the UAV
can locate an unknown emissions point source in the

shortest time possible.

The data used to train our algorithm comes from Large
Eddy Simulations (LES), known to be more accurate
than traditional modeling given its high temporal-

spatial resolution and its ability to simulate the
dynamic behavior of plumes without the need for time-

averaged fields or steady-state assumptions.

 The LES provided us with data of a 3D space at
different points in time. To train our data, we selected

perturbation pressure, base state pressure,
perturbation potential temperature, and wind direction

components as training features. For the label, we
converted the methane concentration data to parts per
million (ppm). We then trained the data using different

open-source machine learning models via MATLAB,
the most promising being the fit linear regression

model. Finally, we used the trained model to predict
methane concentrations over a 3D space. 

Starting at a random coordinate within the plume, we
used the greedy search algorithm to find the position
with the highest concentration, which we assumed to

be the plume center. Based on the measurements
made within the surrounding area of the plume center,
we implemented the Gaussian Plume Model to derive

the point source.

Determine the optimal UAV (Unmanned Aerial Vehicle)
flight path to locate a methane plume’s point source.
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Background

Methodology

It is important to address our approach’s limitations.
There were many assumptions made when

implementing the Gaussian Plume Model to locate the
point source, such as wind speed, source strength,

dispersion coefficients, and stack height, which could
hinder the results. In addition, the greedy search

algorithm does not guarantee finding the point with
the highest predicted concentration, nor is the point
with the highest concentration guaranteed to be the

plume center, despite the fact that the statistical
likelihood for both of the above scenarios is very high.

Finally, predicting concentrations for a single 3D space,
while useful when one does not know the

concentrations of a site, does not account for temporal
variations of a plume overtime. Therefore, the design is

subject to improvement. Instead of limiting the flight
path to a 3D space, we can plan the UAV’s next step

by looking at the LES data for our neighboring
coordinates a few instances ahead of the current

instance. To improve efficiency, we can also look over a
very large area to plan out the UAV’s first step, then

shrink the observation space for every new step being
made until the plume center is found.

Results & Discussion

As of 8/4/2024, we designed a UAV flight path that
uses greedy search to navigate through a 3D space
using predicted methane concentrations to find the
plume center. Then, the Gaussian Plume Model was
used to derive the point source of emissions
The model predicting methane concentrations over
a 3D space was trained using large eddy simulation
data through a fit linear regression 
We will improve our algorithm to account for the
plume’s temporal variations. Once the algorithm is
finalized, site testing will be required for validation

Conclusion

We have not tested our model on a site yet, which will
happen in the future. To quantify the result, we will

simulate multiple flights, measure the distance
between the predicted source and the actual source to

calculate error, and keep track of flight times, which
can be used to compare against traditional, non-

algorithmic UAV flight designs.
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Figure 1: an example flight path design used for plume navigation (Yao 21)

Figure 2: Gaussian Plume Model diagram,

Figure 3: UAV flight path, derived using the algorithm in “Methodology”


