
AR-Enhanced Robot Control: Developing an Immersive Interface
Using MRTK for Intuitive Teleoperation

Author: Wenbo Zhu (ZHUW0019@e.ntu.edu.sg)
College of Computing and Data Science, Nanyang Technological University (Singapore)

Traditional robot control interfaces often lack intuitive spatial mapping, leading
to reduced efficiency and increased cognitive load for operators. Existing
teleoperation systems frequently suffer from limited immersion, hampering
precise real-time control. This research addresses these challenges by using
Augmented Reality (AR) headsets to create an intuitive, immersive interface for
robot control in real-world environments. This approach aims to enhance spatial
understanding, improve operation accuracy, and reduce cognitive burden,
potentially revolutionizing fields such as search and rescue, remote maintenance,
and hazardous environment operations.

Conduct research on Microsoft’s Mixed Reality Toolkit (MRTK), the HoloLens
AR headset, and Unity.

1.

Design and implement an immersive robot control user interface using MRTK
and Unity.

2.

Investigate communication protocols between the robot and the client
application.

3.

Leverage the API provided by Lailu to facilitate real-world robot movement
and control.

4.

3.1 MRTK & Unity Overview
The Mixed Reality Toolkit (MRTK), developed by Microsoft, is a powerful
framework that enables the creation of diverse user interface scenes for the
HoloLens AR headset using Unity. By utilizing the prefabs provided by MRTK,
developers can easily instantiate elements within a newly created Unity scene,
allowing for the rapid design and customization of immersive environments. This
flexibility empowers developers to define tailored AR experiences that enhance
user interaction and engagement.

The user interface for the robot
control system was designed and
implemented using the Mixed Reality
Toolkit (MRTK) in Unity. The UI
consists of a main control panel
featuring a prominent joystick for
robot navigation. Below the joystick, a
blue panel displays the title
"Sterilization Robot Control Joystick"
and includes several interactive
buttons for different control modes:
Profiler, Hand Ray, Hand Mesh, Hand
Joint, and Rec. These buttons allow
the operator to switch between
various hand tracking and interaction
methods, enhancing the versatility of
the robot control interface.

3.3 Communication
The communication system utilizes Netty as the robot's server and Google
Protobuf for data serialization, enhancing security by making the data difficult to
decompile. In Google Protobuf, a `.proto` file defines the schema for structured
data in a language-agnostic manner. By using the proto compiler, we can generate
code in various programming languages for both the server and client. To validate
this approach, I developed a Netty server in Java on my laptop and created a
simple C# script on Unity for testing. As shown in the figure 4, the data was
successfully received and recognized.

3.4 API Documentation
Our robot communicates using a unified message body called `TransferData`,
defined in the `.proto` file provided by Lailu. This message body includes a `type`
field that specifies the action for the robot, a `robotID`, and a `data` field that
contains information such as location, `UUID`, and `robot state`. The various
message types used in the `data` field are also outlined in the provided `.proto`
file.

1 Background

2 Objectives

3 Methods 4 Results

In the current implementation, a significant challenge of latency was
encountered, which impacts the responsiveness and overall user experience of
the AR-based robot control system. This latency issue is primarily attributed to
the extensive use of coroutines in the current code structure, which, while
providing asynchronous operation capabilities, may be introducing unexpected
delays in the AR-to-robot command pipeline. To address this issue, future
improvements could include optimizing the code structure by reevaluating the
use of coroutines and potentially replacing them with more efficient
asynchronous programming patterns where appropriate.

This may involve implementing a more streamlined event-driven architecture,
utilizing Unity's Job System for parallel processing, or exploring alternative
methods for handling asynchronous operations that introduce less overhead.
Additionally, profiling the existing coroutines to identify bottlenecks and
optimizing critical paths could significantly improve system responsiveness and
enhance the overall user experience in AR-based robot control.

5 Discussion

In conclusion, this research successfully developed an immersive Augmented
Reality (AR) interface for robot control using Microsoft’s Mixed Reality Toolkit
(MRTK) and Unity. The implementation showcases the potential for AR to
enhance spatial understanding and streamline the operation of robots in real-
world environments, ultimately reducing the cognitive load for operators. While
initial tests reveal a user-friendly interaction model, the identified latency issues
present a significant challenge that must be addressed to improve
responsiveness and overall user experience. Future work will focus on optimizing
the underlying code structure, particularly concerning the use of coroutines, to
enhance the efficiency of the AR-to-robot command pipeline. This advancement
aims to further solidify the role of AR technology in revolutionizing remote robot
operations across various applications, including search and rescue, remote
maintenance, and hazardous environment operations.

6 Conclusion

Sean-Kerawala. (2022, November 2). Set up a new OpenXR project with MRTK -
Mixed Reality. Microsoft.com. https://learn.microsoft.com/en-
ca/windows/mixed-reality/develop/unity/new-openxr-project-with-mrtk

1.

DavidSheh. (2017). GitHub - DavidSheh/UnityProtobufDemo: use protobuf in
Unity3D. Client (Unity3D + Protobuf) + Server (Java + Netty + Protobuf). GitHub.
https://github.com/DavidSheh/UnityProtobufDemo

2.

MixedRealityToolkit. (2024, June 3). GitHub -
MixedRealityToolkit/MixedRealityToolkit-Unity: This repository holds the third
generation of the Mixed Reality Toolkit for Unity. The latest version of the MRTK
can be found here. GitHub.
https://github.com/MixedRealityToolkit/MixedRealityToolkit-Unity

3.

microsoft. (2022). GitHub - microsoft/MRTK3-iet-tutorials: MRTK3 IET tutorials.
GitHub. https://github.com/microsoft/MRTK3-iet-tutorials

4.

microsoft. (2022b). GitHub - microsoft/ZappysPlayground. GitHub.
https://github.com/microsoft/ZappysPlayground

5.

(2024). Zhihu.com. https://zhuanlan.zhihu.com/p/7083429066.
(2024b). Zhihu.com. https://zhuanlan.zhihu.com/p/3671869107.
(2024c). Zhihu.com. https://zhuanlan.zhihu.com/p/6973580088.

7 References

3.2 User Interface Design

Message TransferData

Value Type Name

int32 type

int32 robotID

bytes data

string uuid

bool state

An Augmented Reality (AR)
interface was successfully
developed using the Mixed Reality
Toolkit (MRTK) for robot control
(Figure 2). Users can access the
control system by wearing an AR
headset and launching the
application. The interface features
a virtual joystick that allows for
intuitive robot movement control
in the real world. Initial tests
demonstrate that the robot
responds to user inputs through
the AR interface, executing
movement commands as directed
(Figure 5). This AR-based control
method has proven to be a user-
friendly solution for remote robot
operation, potentially reducing the
learning curve compared to
traditional control interfaces. The
implementation lays the
groundwork for further refinement
and expanded functionality in AR-
based robot control.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

