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Abstract
Large language models (LLMs) like GPT-4 and Claude-3.5 excel in generating code
snippets but struggle with repository-level tasks requiring comprehensive codebase
understanding. The SWE-bench benchmark, particularly its Lite subset, evaluates
tools on real-world bug fixing. Inspired by the Devin AI Software Engineer, many
agent-based approaches have been developed but face issues with tool complexity
and decision-making. We propose AGENTLESS, a simpler two-phase process for
localization and repair. AGENTLESS outperforms SWE-agent[2] in both localiza-
tion and repair, especially on complex tasks, as shown on SWE-bench Lite. This
approach suggests a more effective, less complex path for autonomous software de-
velopment.

Introduction
Large language models (LLMs) such as GPT-4 and Claude-3.5 have shown
significant capabilities in generating code snippets based on user descrip-
tions. However, their application to repository-level software engineering
tasks remains underexplored. These tasks, including feature addition, pro-
gram repair, and test generation, require an understanding of dependencies
across an entire codebase. The SWE-bench benchmark addresses this gap
by providing real-world GitHub issues and corresponding repositories for
evaluation, with the recently released SWE-bench Lite subset focusing on
bug fixing.

Inspired by the Devin AI Software Engineer, many studies have developed
agent-based approaches, enabling LLMs to autonomously perform actions,
observe feedback, and plan steps. However, these approaches face limita-
tions in tool complexity, decision-making control, and self-reflection capa-
bilities.

To address these issues, we propose AGENTLESS, which follows a
straightforward two-phase process: localization and repair. In the localiza-
tion phase, AGENTLESS identifies fault locations, and in the repair phase,
it generates and selects the best patch. Our analysis of AGENTLESS’s per-
formance on GitHub compared to SWE-agent shows that AGENTLESS ex-
cels in both localization and repair. AGENTLESS successfully resolved
several issues, while SWE-agent’s weaker localization led to poorer repair
performance. Overall, AGENTLESS demonstrated superior results, espe-
cially in complex tasks, on the SWE-bench Lite benchmark.

Given the limitations of current LLMs, complex agent designs are not al-
ways the best solution for repository-level software engineering tasks. In-
stead, a simpler, distributed approach like AGENTLESS can be more effec-
tive. By leveraging the more controllable aspects of LLMs and incorporat-
ing human intervention, AGENTLESS enhances efficiency and effective-
ness, avoiding the pitfalls of fully autonomous agents. This approach offers
a promising direction for future autonomous software development.

For the exploration of Agentless, this will be divided into two steps, since
Agentless is composed of two approaches: localization as well as repair.
Regarding localization we will analyze the code’s localization approach,
while for the repair part we use the methodology of comparing the char-
acteristics of the SWE-agent generated by the agent-based code with the
characteristics of the bugs repaired by Agentless, in order to analyze the
characteristics of Agentless in terms of repairing bugs.

Background
A. Terminology.

Software debugging involves identifying and fixing issues in source code,
encompassing processes like Fault Localization (FL) and Automated Pro-
gram Repair (APR). FL aims to pinpoint buggy elements within a program
using static or dynamic analysis, resulting in a ranked list of suspicious code
elements. APR utilizes this list to generate and verify patches, ensuring
plausible patches pass all test cases and manual verification by developers.

Unified debugging, a pioneering approach, integrates FL and APR by lever-
aging repair information to enhance FL accuracy. This method emphasizes
the interconnection between FL and APR, which aligns with our approach
that offers an end-to-end solution where FL and APR interact without being
deterministic. This architecture enables the modification of code elements
beyond those localized by FL, with FL results being adjustable based on
repairs.

Rubber duck debugging, or rubber ducking, is a method where developers
explain their code aloud to identify gaps between expectations and imple-
mentation. While traditional rubber ducking involves line-by-line explana-
tion, breaking down the code and articulating it in natural language can be
beneficial. .

B. Large Language Models

Large Language Models (LLMs) have made significant strides in natural
language processing, including text generation, conversational engagement,
and logical reasoning. LLMs predict tokens auto-regressively within a tex-
tual context, enabling unsupervised training on massive text corpora. Code
LLMs, specifically trained on code-related data, excel in code generation
tasks. For instance, DeepSeek-Coder is trained on a vast dataset from plat-
forms like GitHub and StackExchange.

LLMs operate using prompts, which are instructions that guide the LLM
to perform tasks until encountering a stop word or reaching a word limit.
Prompt engineering allows researchers to utilize LLM capabilities for vari-
ous tasks without retraining. In this work, we use GPT-4 for automated de-
bugging through prompt engineering, leveraging its advanced understand-
ing of both natural languages and code.

C. Agent-Based Approaches

With the advancement of LLMs, agent-based approaches have emerged to
tackle complex software development tasks. These agents are equipped
with tools to run commands, observe feedback, and plan future actions au-
tonomously. Examples include the Devin AI Software Engineer and Au-
toCodeRover, which enable LLMs to perform tasks iteratively, such as edit-
ing files, running tests, and executing shell commands. Each action taken by

an agent is based on previous actions and feedback from the environment.

However, the complexity of these approaches presents challenges. The us-
age and design of tools require careful abstraction and API design, which
can lead to incorrect or imprecise tool usage. Moreover, agents often lack
control in decision planning and self-reflection, making them prone to sub-
optimal decisions and difficulties in debugging.

In this poster, we propose an alternative to the complex agent-based meth-
ods: AGENTLESS. AGENTLESS employs a simplified two-phase process
of localization and repair, avoiding the need for agents to make autonomous
decisions or use complex tools. This approach not only simplifies the de-
sign but also enhances the interpretability and effectiveness of automated
software development.

Methods

Figure 1: Overview of AGENTLESS[1]

Figure 1 shows the workflow on Agentless, and we start by understanding
the workflow. Due to the open source nature of the project, we use the
code and data provided by it for high reductivity. For the exploration of
Agentless’ localization features, we read the code provided in github and
the output of the code run to analyze its localization features. For the explo-
ration of Agentless repair function, we compare it with another SWE-agent
with agent code generation repair, mainly to analyze the effect of the two
for code repair and the characteristics of the comparison.

Figure 2: logfile of SWE-agent

Results
For the localization part, SWE-agent’s localization is weaker than that of
Agentless, which is basically able to accurately locate the location of the
bug. For the fixing part, using the same bug situation in the dataset, we
sampled some Fail to pass samples, which Agentless was able to solve and
left it to SWE-agent to fix the code, SWE-agent was not able to accurately
and correctly change the incorrect code, usually because SWE-agent failed
to locate it accurately. At the same time, we also found some problems on
github for you to modify, for simple problems both of them can be solved,
and there are also some cases with strong overall logic and large amount of
code, some of which can not be handled by Agentless, but the overall result
is better. Figure 3 shows how we handled integrating Agentless to fix bugs
in the SWE-bench-lite dataset.

Figure 3: results of Agentless

Conclusions
Due to the current limitations of the large language model, complex agent
design is not a good solution to the current an entire repository-level soft-
ware engineering task; instead, it is better to use a distributed solution with-
out using overly complex agents. The uncontrollability and robustness of
the large language model still assists in the development of large-scale soft-
ware. The idea provided by Agentless is to utilize the more controllable part
of the large language model, and then through human intervention, in order
to better improve the effect and efficiency, it should be improved step by
step, rather than blindly using more complex and fully automated agents.
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