
Termination Analysis of Probabilistic Counter Programs

Sergei Novozhilov1

supervised by: Prof. Dr. Mingshuai Chen2

1snovozhilov@connect.ust.hk
2m.chen@zju.edu.cn

1 Introduction

The halting problem is undoubtedly the most famous unsolvable problem in
the theory of computation. Roughly speaking, the problem is to determine, given
the code of a program and an input variables, whether the program will run indefi-
nitely or halt after a finite number of steps. The halting problem was first proven to
be undecidable by Alan Turing in 1936. Despite the fact that the problem is unde-
cidable in general, there are many techniques for solving it in specific cases, such
as invariant generation or the ranking function method.

The introduction of probabilistic choice into programs changes the situa-
tion, as now the program execution is nondeterministic, and the time and the result
of execution may differ from run to run which significantly compicate reasoning
about the programs and finding the bugs.

Example
In the example, the Coin() function rerutns 0 or 1 with equal probability. The
code will work indefinitely with probability 1/2 and halt with probability 1/2.

1: x = Coin();
2: while (x > 0) {
3: x = x + 1;
4: }

The discreptancy of the program behavior from run to run leads to a mod-
ified version of the halting problem and called Almost Sure Termination or AST
for short. Furthermore, if the runtime of the program has finite expectation, then
the program is said belong to the Positive Almost Surely Teminating commonly
abbreviated as PAST.

Definition (AST and PAST)
For a class of probabilistic programs PP let T be the runtime function which
maps a program p ∈ PP to a distribution over the extended set of natural numbers
N ∪ {∞}:

T : PP→ D(N ∪ {∞})
A program p ∈ PP is said to terminate almost surely iff

P[T (p) <∞] = 1.

A program p ∈ PP is said to terminate positively almost surely iff

E[T (p)] <∞.

It is evident from the definition that PAST ⊆ AST, moreover it is known
than PAST is the proper subset of AST, i.e. there are programs that are almost
surely terminating but not positively almost surely terminating. The next example
illustrates this fact.

Example (PAST (AST)
This example simulates a one dimensional symmetric random walk.

1: fun RandomWalk1D() {
2: x = 10;
3: while (x > 0) {
4: if (Coin() == 1) x = x + 1;
4: else x = x - 1;
5: }
6: }

From the theory of random walks, it is knownt that P[T (RandomWalk1D) <∞] =
1 but E[T (RandomWalk1D)] =∞, which intuitively means that the program will
halt eventually but we might need to wait for it for a long time.

As the probabilistic programs are the superclass of deterministic programs
and thereofre the AST/PAST properties are also undecidable in general. There are
two ways approach this problem: the first approach is to develop a technique which
will be sound but incomplete (i.e. it will not be able to prove the termination for
some programs but whenever it proves the termination, the answer is correct), and
the second approach is to develop a simpler programming language which admit a
decision procedure for the temination problem. We followed the second approach
and developed a resrticted class of programs called Probabilistic Counter Programs
(PCP) bulting on the idea of [2] of the constant probability programs.

We can summarize the main contributions of this work as follows:

• We introduce the new class of probabilistic programs called PCP toegether with
the hierarchy of the classes of programs:

1d-PCP ⊂ 2d-PCP ⊂ 3d-PCP ⊂ . . . ⊂ kd-PCP ⊂ . . . ⊂ PCP

• For 1d-PCP we constructed an efficient algorithm for deciding the AST and
PAST property.

• We proved that AST and PAST properties are undecidable already for 2d-PCP.

• However we showed that in significant nuber of cases the kd-PCP programs
essentially behave as 1d-PCP programs and we call this class e1d-PCP pro-
grams. For such programs the AST and PAST properties are decidable by the
reduction to the 1d-PCP case.

The following diagram shows the classes and the relations between them:

1d-PCP

2d-PCP

PCP

DP

PCP

New Classes

Decidable

Undecidable

AST/PAST:

e1d-PCP

2 Background

The subject of our research is the probabilistic programs which can modify
its variables in a very restricted way: namely, the programs are allowed only to
change the variables values only by adding a fixed value to a variable. Moreover,
we organize all such programs into a graded hierarchy of the classes, whenre the
gradation is done based on the number of the variables used.

Definition (PCP, kd-PCP)
Probabilistic counter programs are the programs which can be written using the
syntax:
init x = n; (counter initialization)
x = x + n; (counter update)
if (G) {B1} else {B2} (if conditions)
while (G) {Body} (while loops)
{B1} [p1] {B2}... [pk] {Bk+1} (probabilistic branching)

Where Bi are blocks, the guards G are boolean expressions over the counters
and the probabilistic branching construction chooses either of the branches with
probability pi.
If the program uses no more than k counters, then it is called k-dimensional PCP
or kd-PCP for short.

Notice that instead of using the Coin() function, we use the probabilistic
branching construction. The programs using a coin and the probabilistic branching
are equivalent and can be easily transformed to each other.

Example
Here we show how the previous example can be transformed into the 1d-PCP.

1: fun RandomWalk1D() {
2: x = 10;
3: while (x > 0) {
4: {x = x + 1} [1/2] {x = x - 1}
5: }
6: }

The following program is an example of the 4d-PCP which simulates a process
of collecting of 4 coupons, where each step we are getting a new coupon one of
the 4 types with equal probability. The program will halt after we collect all 4
coupons:

1: init x1 = 0, x2 = 0, x3 = 0, x4 = 0;
2: while (x1 + x2 + x3 + x4 < 4) {
3: {x1 = 1} [1/4] {x2 = 1} [1/4]
4: {x3 = 1} [1/4] {x4 = 1}
5: }

In the line of our approach, we compile the programs into the counter proba-
bilistic transition system which are play the same role for the probabilistic programs
as the control flow graphs for the deterministic programs.

Definition (CPTS)
Counter Transition System is a tuple (L, x, T) where L is the set of locations,
x ∈ Z is the variables vector, T ⊂ S × P(x) × Z × [0, 1] × S is a set of transitions,
where for t = (li, g,upd, p, lj):

• li, lj ∈ L are the source and target locations

• g(x) ∈ P(x) is a predicate over the variables x, each consists of boolean con-
nectives {∨,∧,¬}, algebraic predicates {≥,≤, >,<,=, 6=}, arithmetical func-
tions {+,−, ·, (−mod m)};

• upd ∈ Zk is an update vector, which is applied to the variables x after the
transition;

Also we need a classical notion of the Markov chain to define the semantics
of the probabilistic programs.

Definition (MC)
Countable state Markov chain is a tuple (S, P) where S is the set of states,
P : S × S → [0, 1] is the transition matrix.

3 Decision Procedure for 1d-PCP

The decision procedure for the one dimensional case is based on the se-
quence of reductions, first we reduce a 1d-PCP to the 1d-CPTS, then we reduce
the 1d-CPTS to the MC. Then we prove that the Markov chain can be decomposed
into a regular infinite Markov chain and a finite irregular Markov chain:

M = Mreg tMirr,

where the regualr part can be analyzed using classical one dimentional random
walks theory and the irregular part is finite and can be handled by the existing prob-
abilistic model checking techniques.

Theorem (1d-PCP Termination)
The AST and PAST properties are decidable for the 1d-PCP programs.

We demonstrate the decision procedure on a simple example.

Example
Consider a program

1: init x = 1;
2: while (x > 0) {
3: {x = x - 1;} [2/3] {x = x + 2;}
4: if (x < 4) {x = x - 1;}
5: }

The program is equivalent to the following CPTS:

Which is then converted to a countable state Markov chain which further is de-
composed into finite state irregular part and infinite state regular part:

The regular part is analyzed using the random walks theory and the irregular part
is analyzed using the finite state probabilistic model checking techniques, after
what we can conclude that the program is AST but not PAST.

4 Undecidability of 2d-PCP

Apparanetly the decision procedure for the 1d-PCP cannot be extended to
the higher dimensional counter programs.

Theorem (≥ 2d-PCP Termination)
The AST and PAST properties are undecidable for the kd-PCP programs when-
ever k ≥ 2.

The proof is based on the reduction from a turing complete deteministic
model of computation based on two register and two types of instructions: inc and
dec. The undecidability of such a minimalistic model was proved in [1].

5 Conclusion

In this work, we explored the termination analysis of probabilistic counter
programs (PCP). By examining the class of PCP programs, we identified a hier-
archy based on the number of counters. We proved the decidability results of the
AST and PAST properties of 1d-PCP class and undecidability results for kd-PCP
class for k ≥ 0.

The future work consisits of automatizing the proposed approach and devis-
ing a procedure for automatic variables reduction for the briefly described e1d-PCP
class.

References

[1] A. Dudenhefner, "Certified Decision Procedures for Two-Counter Machines,"
in 7th International Conference on Formal Structures for Computation and
Deduction (FSCD 2022), 2022, doi: 10.4230/LIPIcs.FSCD.2022.16.

[2] J. Giesl, P. Giesl, and M. Hark, "Computing Expected Runtimes for Constant
Probability Programs," in Automated Deduction – CADE 27, Springer Inter-
national Publishing, Cham, 2019, isbn: 978-3-030-29436-6.

Acknowledgements:

This project was supported by the GripS program. The author expresses his grat-
itude to Prof. Dr. Mingshuai Chen for his guidance and invaluable discussions
throughout the project.

